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ABSTRACT

This review critically examines the current state of Al in environmental chemistry, highlighting both its potential and
limitations in predicting and preventing toxicity in chemical products. Integrating Artificial Intelligence (Al) into
environmental chemistry for predicting and preventing toxicity in chemical products is an emerging field that
promises to revolutionize toxicological assessments and sustainable chemical design. Al techniques, particularly
machine learning (ML) and deep learning (DL), offer the potential to predict the toxicity of chemical substances
rapidly, reducing reliance on traditional experimental methods that are often time-consuming, expensive, and
ethically problematic. By utilizing large datasets on chemical properties, molecular structures, and biological effects,
Al models can forecast the environmental and health impacts of chemicals at an early stage, enabling more efficient
risk assessments. However, there are several critical challenges and limitations to consider. The accuracy of Al
predictions is dependent on the availability of high-quality, comprehensive data, which is often lacking, especially
for new or untested chemicals. Furthermore, the interpretability of Al models remains a significant issue, as many
models function as "black boxes," making it difficult to understand the rationale behind their predictions. This lack
of transparency may hinder trust in Al-driven decision-making. Additionally, Al tools may lead to biases if the data
is incomplete. Despite these challenges, Al presents opportunities for the design of greener chemicals by optimizing
molecular structures to reduce environmental harm and enhance biodegradability. However, integrating Al into
environmental chemistry requires careful consideration of ethical, legal, and regulatory frameworks to ensure the
responsible use of technology.

KEYWORDS: Atrtificial Intelligence; toxicity prediction, machine learning; sustainable chemical design; data quality
and interpretability.

1. INTRODUCTION

The proliferation of industrial chemicals in modern society has generated unprecedented
challenges in assessing environmental and human health risks'.Traditionally, toxicity evaluations have
depended on in vivo and in vitro methods, which, despite being informative, are time consuming,
expensive, and ethically contentious due to animal testing?. With the rise of green chemistry principles
and sustainability initiatives, there is a pressing demand for faster, more predictive, and less invasive
toxicity assessment strategies®. Atrtificial Intelligence (Al) has rapidly emerged as a transformative tool
across multiple scientific disciplines, including drug discovery, materials science, and climate modeling
4. In environmental chemistry, Al particularly machine learning (ML) and deep learning (DL) have
demonstrated immense potential in predicting chemical toxicity by recognizing hidden patterns in large
datasets of molecular and toxicological information®. By doing so, Al offers opportunities to shift toxicity
testing from a reactive to a predictive framework, allowing safer product design and proactive
regulation®.

This review provides a concise discussion of Al applications in environmental chemistry. It
focuses on predictive toxicology, exposure modeling, and sustainable design, while critically evaluating
challenges such as data scarcity, black-box algorithms, algorithmic bias, and regulatory hurdles. By
critically evaluating these aspects, the paper highlights how Al can reshape the future of environmental
risk assessment and support the global transition toward sustainable chemical management.
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2. ARTIFICIAL INTELLIGENCE APPROACHES IN ENVIRONMENTAL CHEMISTRY

Al comprises computational methods designed to mimic human cognition and decision-making.
Among its subsets, ML enables systems to learn patterns from data, while DL employs multilayered
artificial neural networks to capture complex nonlinear relationships’.Machine Learning methods
commonly used in environmental toxicology include: Support Vector Machines (SSVMs) for
classification tasks such as mutagenicity prediction®.Random Forests (RFs) for acute toxicity and
bioaccumulation risk modeling®.Artificial Neural Networks (ANNs) for non-linear relationships between
molecular descriptors and toxicological endpoints'°.Deep Learning architectures, such as Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), are increasingly applied to large-
scale datasets (e.g., omics data, chemical images) for predicting multi-endpoint toxicity with higher
accuracy Table 1 summarizes some commonly used tools for predicting toxicity of chemical products ™.
Table 1: Tools for Predicting Toxicity

Tool / Approach Main Technique Common Application References
ToxCast Large-scale Identifying how thousands of 4.6.7.9
screening chemicals interact with biological
systems.
QSAR Models Statistical methods Estimating toxicity of chemicals in 5,10

water and soil based on structure
activity patterns.

DeepTox Pattern recognition Detecting hormone-like (endocrine) 4.5.11
activity in industrial and consumer
products.

Read-Across Comparison Inferring toxicity of new substances 67,10

approach by comparing them to well-known
chemicals.

3. APPLICATIONS OF Al IN TOXICITY PREDICTION

Artificial intelligence (Al) has emerged as a powerful tool for predicting chemical toxicity, offering
significant improvements over conventional in vitro and in vivo testing. Traditional methods are often
costly, time consuming, and ethically challenging due to reliance on animal studies.

Al-based models, particularly machine learning (ML) and deep learning (DL), enable rapid
screening of large chemical libraries to identify potential hazards before extensive laboratory
experiments are conducted. 3.1 Predictive Toxicology

Recent advances in artificial intelligence (Al) have greatly enhanced predictive toxicology by
moving beyond ftraditional QSAR models toward more sophisticated deep learning and
transformerbased approaches'?. Models such as ChemBERTa and MolBERT leverage natural
language processing techniques to learn chemical representations directly from molecular sequences,
providing superior accuracy for endpoints such as mutagenicity, carcinogenicity, and endocrine
disruption®. These models outperform conventional machine learning methods, especially when applied
to diverse datasets of environmental pollutants*. In addition, Al has been increasingly applied to
emerging contaminants such as pharmaceuticals, legacy pesticides, per- and polyfluoroalkyl
substances (PFAS), and microplastics, which often lack extensive experimental toxicity data®®. By
combining molecular descriptors with omics datasets, modern deep learning frameworks have
demonstrated high predictive power for mixture toxicity, a critical issue given that real-world exposures
usually involve chemical cocktails rather than isolated compounds 7.
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3.2 Risk and Exposure Assessment

Al applications in environmental chemistry extend beyond toxicity prediction to risk and
exposure assessment, where the focus is on chemical fate, transport, and bioaccumulation®-

Machine learning models have been integrated with hydrological and climate data to forecast how
pollutants disperse in air, soil, and aquatic systems under changing environmental conditions®.

Recent studies highlighted the use of graph neural networks (GNNs) to model interactions within
soilwater systems, enabling more accurate predictions of pesticide runoff and heavy metal leaching
compared with regression-based models'?. Table 2 presents types of toxicological effects that can be
predicted with Al. Similarly, Al-driven exposure models are now incorporating climate change variables
such as rainfall intensity and temperature fluctuations, offering more realistic simulations of pollutants
mobility in vulnerable ecosystemss.

Table 2. Types of Toxicological Effects Predicted

Toxic Effect Approach Used Example Application References
Acute Toxicity Statistical analysis Estimating lethal dose (LD50) for 1.7
pesticides or industrial solvents
Mutagenicity Data classification Predicting whether a chemical 3.5
may damage DNA (e.g., Ames test
outcomes)
Carcinogenicity Pattern recognition Long-term predictions of 27
cancercausing potential in
industrial chemicals
Endocrine Disruption Biological modeling Identifying substances that may 2.6

mimic or block hormones in
humans or wildlife

The computational workflow used to predict the toxicity of chemical compounds based on their
molecular features (Fig.1) begins with the chemical structure, which represents the unique arrangement
of atoms, bonds, and functional groups that determine the physicochemical and biological properties of
a compound’. Every molecule has a distinct structure, and this structural information forms the
foundation for toxicity prediction’®.

The chemical structure is then converted into molecular descriptors and fingerprints.
Descriptors are numerical values that quantify specific properties of the molecule, such as molecular
weight, polarity, hydrophobicity, and the number of hydrogen bond donors or acceptors’®. Fingerprints,
on the other hand, are simplified digital representations that capture the presence or absence of
structural features or functional groups.Together, these descriptors and fingerprints transform the
chemical structure into a mathematical format suitable for computational analysis'’.

Finally, this processed information is used to predict toxicity through computational models, often based
on machine learning or quantitative structure-activity relationship (QSAR) methods. The skull-
andcrossbones symbol displayed on the computer screen in the figure represents the outcome of such
predictive modeling, where a compound can be flagged as toxic or non-toxic'®. This approach provides
a rapid, cost-effective, and ethical alternative to traditional laboratory and animal testing, making it highly
valuable in drug discovery, environmental safety assessments, and regulatory toxicology.
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Figure 1: Relationship between chemical structure and toxicity
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Risk and Exposure Assessment

Beyond toxicity, Al facilitates risk assessment by simulating environmental fate, transport, and
bioaccumulation of chemicals™®.

Models can predict biodegradation rates, aid persistence classification, bioaccumulation in aquatic food
webs, improving ecological impact assessments®?, chemical transport in soil and water systems as well
as enabling proactive remediation planning'®. The Al-based workflow for toxicity prediction (Fig. 2),
highlights the interconnected stages involved in assessing the potential hazards of chemical
compounds®°8, The process begins with chemical compounds, which serve as the input data for toxicity
studies. These compounds undergo data collection, where critical information such as chemical
properties, molecular structures, and biological activity data is compiled from experimental databases
and computational sources'®"". The collected data is then used in the stage of Al model development,
which employs machine learning and deep learning approaches to identify patterns and build predictive
models2.

These models enable toxicity prediction, which involves classifying chemicals based on
potential toxic effects and conducting risk assessments to evaluate environmental and human health
impacts®19, Predictions from Al tools can inform further chemical testing, database expansion, and safer
chemical design?°. This cyclical workflow underscores the integration of data science with environmental
chemistry to create faster, cost-effective, and ethically sustainable alternatives to traditional toxicity
testing 2571013,
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Al-Based Workflow for Texicity Prediction
Figure 2: Al-Based Workflow for Toxicity Prediction
3.3 Greener Chemical Design

Al contributes to sustainable chemistry by guiding the design of safer alternatives: Generative
models can propose novel molecules with reduced toxicity profiles?%°19- Multi-objective optimization
balances functionality, stability, and biodegradability®®. Case studies show Al-driven design of flame
retardants with minimized endocrine activity'*. Beyond risk assessment, Al is transforming the design
of greener and safer chemicals. Generative models such as variational autoencoders (VAEs) and
generative adversarial networks (GANs) are now being applied to propose novel molecules with
optimized properties®°. These models allow researchers to balance multiple objectives-such as stability,
biodegradability, and reduced toxicity within a single framework, greatly accelerating the development
of sustainable alternatives®. For example, recent case studies have demonstrated the use of Al-guided
molecular optimization to design flame retardants with minimized endocrine-disrupting potential and
surfactants with improved biodegradability profiles's. Multi-objective optimization frameworks further
allow chemists to reduce environmental persistence while maintaining functionality, an essential
consideration in green chemistry''. The integration of Al in sustainable chemical design not only speeds
up discovery but also aligns with regulatory pressures to reduce hazardous substances in consumer
products, industrial processes, and environmental applications'#6.

The comparative accuracy of four machine learning algorithms used for predictive modelling is
illustrated in Fig.3. The vertical axis represents accuracy in percentage, ranging from 0% to 100%, while
the horizontal axis lists the algorithms: Decision Tree, Random Forest, Support Vector Machine (SVM),
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and Neural Network*”%17. The Decision Tree model achieves the lowest accuracy at 70%, indicating
that while it provides a simple and interpretable framework, it may not capture complex patterns in the
data effectively*7°. In contrast, the Random Forest model significantly improves performance, reaching
85% accuracy''. This increase can be attributed to its ensemble nature, where multiple decision trees
are combined to reduce overfitting and improve generalization*®.

The Support Vector Machine (SVM) model achieves 80% accuracy, outperforming the Decision
Tree but performing slightly below Random Forest. SVM is known for its effectiveness in handling
highdimensional data and finding optimal classification boundaries, though its performance can depend
heavily on parameter tuning and kernel selection'®'5. The Neural Network model records the highest
accuracy at 90%, demonstrating its superior ability to capture nonlinear relationships and complex data
structures’®.
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Figure 3: Comparative Accuracy of ML Models

4. CHALLENGES AND LIMITATIONS

Emerging contaminants lack toxicological data, resulting in data gaps that undermine predictive
reliability'®. Biased datasets over representing certain chemical classes can also skew predictions3.69,
The most significant barriers to regulatory acceptance is the “black-box” nature of many DL models as
well as ethical concerns regarding algorithmic bias and accountability*'2. Despite these advances,
several challenges limit the widespread adoption of Al in environmental toxicology?'.Data availability
remains the most pressing barrier: many emerging contaminants, particularly those prevalent in low-
and middle-income regions, lack sufficient toxicological records to train reliable models?2.This creates
blind spots in predictions, especially for underrepresented chemical classes such as nanomaterials and
novel agrochemicals?®. Another concern lies in algorithmic bias, where models trained on unbalanced
datasets may overrepresent well-studied industrial compounds while neglecting region-specific
pollutants such as pharmaceuticals and pesticides in African water systems?*.

5. CONCLUSION

Al can transform environmental chemistry by enabling predictive and sustainable approaches
to toxicity assessment. While challenges such as data quality, interpretability, and regulatory acceptance
remain, continued development of transparent models, data harmonization, and supportive policies will
allow Al-driven approaches to become central in safeguarding both human health and ecosystems.

6. FUTURE PROSPECTS AND RECOMMENDATIONS

The future of Al in environmental toxicology relies on developing explainable Al to improve
transparency and regulatory trust, supported by international collaboration to build harmonized,
openaccess datasets. Robust validation frameworks are needed to ensure models perform reliably in
realworld contexts. Capacity building through interdisciplinary training and stronger partnerships among
academia. industry, and regulators will be vital to translate its advances into practical tools for
safeguarding human health and the environment.
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