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ABSTRACT  
This review critically examines the current state of AI in environmental chemistry, highlighting both its potential and 

limitations in predicting and preventing toxicity in chemical products. Integrating Artificial Intelligence (AI) into 

environmental chemistry for predicting and preventing toxicity in chemical products is an emerging field that 

promises to revolutionize toxicological assessments and sustainable chemical design. AI techniques, particularly 

machine learning (ML) and deep learning (DL), offer the potential to predict the toxicity of chemical substances 

rapidly, reducing reliance on traditional experimental methods that are often time-consuming, expensive, and 

ethically problematic. By utilizing large datasets on chemical properties, molecular structures, and biological effects, 

AI models can forecast the environmental and health impacts of chemicals at an early stage, enabling more efficient 

risk assessments. However, there are several critical challenges and limitations to consider. The accuracy of AI 

predictions is dependent on the availability of high-quality, comprehensive data, which is often lacking, especially 

for new or untested chemicals. Furthermore, the interpretability of AI models remains a significant issue, as many 

models function as "black boxes," making it difficult to understand the rationale behind their predictions. This lack 

of transparency may hinder trust in AI-driven decision-making. Additionally, AI tools may lead to biases if the data 

is incomplete. Despite these challenges, AI presents opportunities for the design of greener chemicals by optimizing 

molecular structures to reduce environmental harm and enhance biodegradability. However, integrating AI into 

environmental chemistry requires careful consideration of ethical, legal, and regulatory frameworks to ensure the 

responsible use of technology.  

KEYWORDS: Artificial Intelligence; toxicity prediction, machine learning; sustainable chemical design; data quality 

and interpretability.  

1. INTRODUCTION  

The proliferation of industrial chemicals in modern society has generated unprecedented 

challenges in assessing environmental and human health risks1.Traditionally, toxicity evaluations have 

depended on in vivo and in vitro methods, which, despite being informative, are time consuming, 

expensive, and ethically contentious due to animal testing2. With the rise of green chemistry principles 

and sustainability initiatives, there is a pressing demand for faster, more predictive, and less invasive 

toxicity assessment strategies3. Artificial Intelligence (AI) has rapidly emerged as a transformative tool 

across multiple scientific disciplines, including drug discovery, materials science, and climate modeling 
4. In environmental chemistry, AI particularly machine learning (ML) and deep learning (DL) have 

demonstrated immense potential in predicting chemical toxicity by recognizing hidden patterns in large 

datasets of molecular and toxicological information5. By doing so, AI offers opportunities to shift toxicity 

testing from a reactive to a predictive framework, allowing safer product design and proactive 

regulation6.  

This review provides a concise discussion of AI applications in environmental chemistry. It 

focuses on predictive toxicology, exposure modeling, and sustainable design, while critically evaluating 

challenges such as data scarcity, black-box algorithms, algorithmic bias, and regulatory hurdles. By 

critically evaluating these aspects, the paper highlights how AI can reshape the future of environmental 

risk assessment and support the global transition toward sustainable chemical management.  
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2. ARTIFICIAL INTELLIGENCE APPROACHES IN ENVIRONMENTAL CHEMISTRY  

AI comprises computational methods designed to mimic human cognition and decision-making. 

Among its subsets, ML enables systems to learn patterns from data, while DL employs multilayered 

artificial neural networks to capture complex nonlinear relationships7.Machine Learning methods 

commonly used in environmental toxicology include: Support Vector Machines (SSVMs) for 

classification tasks such as mutagenicity prediction8.Random Forests (RFs) for acute toxicity and 

bioaccumulation risk modeling9.Artificial Neural Networks (ANNs) for non-linear relationships between 

molecular descriptors and toxicological endpoints10.Deep Learning architectures, such as Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), are increasingly applied to large-

scale datasets (e.g., omics data, chemical images) for predicting multi-endpoint toxicity with higher 

accuracy Table 1 summarizes some commonly used tools for predicting toxicity of chemical products11. 

Table 1: Tools for Predicting Toxicity  

Tool / Approach  Main Technique  Common Application  References  

ToxCast  

  
Large-scale 

screening  
Identifying how thousands of 

chemicals interact with biological 

systems.   

4,6,7,9  

QSAR Models  Statistical methods  Estimating toxicity of chemicals in 

water and soil based on structure 

activity patterns.  

5,10  

DeepTox  Pattern recognition  Detecting hormone-like (endocrine) 

activity in industrial and consumer 

products.   

4,5.11  

Read-Across  Comparison 

approach  
Inferring toxicity of new substances 

by comparing them to well-known 

chemicals.   

6,7,10  

  

3. APPLICATIONS OF AI IN TOXICITY PREDICTION  

Artificial intelligence (AI) has emerged as a powerful tool for predicting chemical toxicity, offering 

significant improvements over conventional in vitro and in vivo testing. Traditional methods are often 

costly, time consuming, and ethically challenging due to reliance on animal studies.  

AI-based models, particularly machine learning (ML) and deep learning (DL), enable rapid 

screening of large chemical libraries to identify potential hazards before extensive laboratory 

experiments are conducted. 3.1 Predictive Toxicology  

Recent advances in artificial intelligence (AI) have greatly enhanced predictive toxicology by 

moving beyond traditional QSAR models toward more sophisticated deep learning and 

transformerbased approaches1,2. Models such as ChemBERTa and MolBERT leverage natural 

language processing techniques to learn chemical representations directly from molecular sequences, 

providing superior accuracy for endpoints such as mutagenicity, carcinogenicity, and endocrine 

disruption3. These models outperform conventional machine learning methods, especially when applied 

to diverse datasets of environmental pollutants4. In addition, AI has been increasingly applied to 

emerging contaminants such as pharmaceuticals, legacy pesticides, per- and polyfluoroalkyl 

substances (PFAS), and microplastics, which often lack extensive experimental toxicity data5,6. By 

combining molecular descriptors with omics datasets, modern deep learning frameworks have 

demonstrated high predictive power for mixture toxicity, a critical issue given that real-world exposures 

usually involve chemical cocktails rather than isolated compounds 7,8.   
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3.2 Risk and Exposure Assessment  

AI applications in environmental chemistry extend beyond toxicity prediction to risk and 

exposure assessment, where the focus is on chemical fate, transport, and bioaccumulation10.  

Machine learning models have been integrated with hydrological and climate data to forecast how 

pollutants disperse in air, soil, and aquatic systems under changing environmental conditions9.  

 Recent studies highlighted the use of graph neural networks (GNNs) to model interactions within 

soilwater systems, enabling more accurate predictions of pesticide runoff and heavy metal leaching 

compared with regression-based models12.. Table 2 presents types of toxicological effects that can be 

predicted with AI. Similarly, AI-driven exposure models are now incorporating climate change variables 

such as rainfall intensity and temperature fluctuations, offering more realistic simulations of pollutants 

mobility in vulnerable ecosystems13.   

Table 2. Types of Toxicological Effects Predicted  

Toxic Effect  Approach Used  Example Application  References  

Acute Toxicity  Statistical analysis  Estimating lethal dose (LD50) for 

pesticides or industrial solvents   

1,7  

Mutagenicity  Data classification  Predicting whether a chemical 

may damage DNA (e.g., Ames test 

outcomes)   

3,5  

Carcinogenicity  Pattern recognition  Long-term predictions of 

cancercausing potential in 

industrial chemicals   

2,7  

Endocrine Disruption  Biological modeling  Identifying substances that may 

mimic or block hormones in  

humans or wildlife   

2,6  

  

  The computational workflow used to predict the toxicity of chemical compounds based on their 

molecular features (Fig.1) begins with the chemical structure, which represents the unique arrangement 

of atoms, bonds, and functional groups that determine the physicochemical and biological properties of 

a compound14. Every molecule has a distinct structure, and this structural information forms the 

foundation for toxicity prediction15.  

The chemical structure is then converted into molecular descriptors and fingerprints. 

Descriptors are numerical values that quantify specific properties of the molecule, such as molecular 

weight, polarity, hydrophobicity, and the number of hydrogen bond donors or acceptors16. Fingerprints, 

on the other hand, are simplified digital representations that capture the presence or absence of 

structural features or functional groups.Together, these descriptors and fingerprints transform the 

chemical structure into a mathematical format suitable for computational analysis17.  

Finally, this processed information is used to predict toxicity through computational models, often based 

on machine learning or quantitative structure-activity relationship (QSAR) methods. The skull-

andcrossbones symbol displayed on the computer screen in the figure represents the outcome of such 

predictive modeling, where a compound can be flagged as toxic or non-toxic18. This approach provides 

a rapid, cost-effective, and ethical alternative to traditional laboratory and animal testing, making it highly 

valuable in drug discovery, environmental safety assessments, and regulatory toxicology.  

  

Figure 1: Relationship between chemical structure and toxicity  
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 Risk and Exposure Assessment  

Beyond toxicity, AI facilitates risk assessment by simulating environmental fate, transport, and 

bioaccumulation of chemicals18.   

Models can predict biodegradation rates, aid persistence classification, bioaccumulation in aquatic food 

webs, improving ecological impact assessments8-9, chemical transport in soil and water systems as well 

as enabling proactive remediation planning19. The AI-based workflow for toxicity prediction (Fig. 2), 

highlights the interconnected stages involved in assessing the potential hazards of chemical 

compounds3,5,8. The process begins with chemical compounds, which serve as the input data for toxicity 

studies. These compounds undergo data collection, where critical information such as chemical 

properties, molecular structures, and biological activity data is compiled from experimental databases 

and computational sources10-11. The collected data is then used in the stage of AI model development, 

which employs machine learning and deep learning approaches to identify patterns and build predictive 

models12.   

These models enable toxicity prediction, which involves classifying chemicals based on 

potential toxic effects and conducting risk assessments to evaluate environmental and human health 

impacts8,10. Predictions from AI tools can inform further chemical testing, database expansion, and safer 

chemical design20. This cyclical workflow underscores the integration of data science with environmental 

chemistry to create faster, cost-effective, and ethically sustainable alternatives to traditional toxicity 

testing 2,5,7,10,13.  

  

  

Figure 2: AI-Based Workflow for Toxicity Prediction  

3.3 Greener Chemical Design  

AI contributes to sustainable chemistry by guiding the design of safer alternatives: Generative 

models can propose novel molecules with reduced toxicity profiles2,6,9-10. Multi-objective optimization 

balances functionality, stability, and biodegradability3,5. Case studies show AI-driven design of flame 

retardants with minimized endocrine activity14. Beyond risk assessment, AI is transforming the design 

of greener and safer chemicals. Generative models such as variational autoencoders (VAEs) and 

generative adversarial networks (GANs) are now being applied to propose novel molecules with 

optimized properties3,9. These models allow researchers to balance multiple objectives-such as stability, 

biodegradability, and reduced toxicity within a single framework, greatly accelerating the development 

of sustainable alternatives5. For example, recent case studies have demonstrated the use of AI-guided 

molecular optimization to design flame retardants with minimized endocrine-disrupting potential and 

surfactants with improved biodegradability profiles13. Multi-objective optimization frameworks further 

allow chemists to reduce environmental persistence while maintaining functionality, an essential 

consideration in green chemistry11. The integration of AI in sustainable chemical design not only speeds 

up discovery but also aligns with regulatory pressures to reduce hazardous substances in consumer 

products, industrial processes, and environmental applications14,16.  

The comparative accuracy of four machine learning algorithms used for predictive modelling is 

illustrated in Fig.3. The vertical axis represents accuracy in percentage, ranging from 0% to 100%, while 

the horizontal axis lists the algorithms: Decision Tree, Random Forest, Support Vector Machine (SVM), 
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and Neural Network4,7,9,17.The Decision Tree model achieves the lowest accuracy at 70%, indicating 

that while it provides a simple and interpretable framework, it may not capture complex patterns in the 

data effectively4,7,9. In contrast, the Random Forest model significantly improves performance, reaching 

85% accuracy11. This increase can be attributed to its ensemble nature, where multiple decision trees 

are combined to reduce overfitting and improve generalization4,6.  

The Support Vector Machine (SVM) model achieves 80% accuracy, outperforming the Decision 

Tree but performing slightly below Random Forest. SVM is known for its effectiveness in handling 

highdimensional data and finding optimal classification boundaries, though its performance can depend 

heavily on parameter tuning and kernel selection13,15. The Neural Network model records the highest 

accuracy at 90%, demonstrating its superior ability to capture nonlinear relationships and complex data 

structures16.  

  

Figure 3: Comparative Accuracy of ML Models  

4. CHALLENGES AND LIMITATIONS  

Emerging contaminants lack toxicological data, resulting in data gaps that undermine predictive 

reliability15. Biased datasets over representing certain chemical classes can also skew predictions3,6,9. 

The most significant barriers to regulatory acceptance is the “black-box” nature of many DL models as 

well as ethical concerns regarding algorithmic bias and accountability4,6,12. Despite these advances, 

several challenges limit the widespread adoption of AI in environmental toxicology21.Data availability 

remains the most pressing barrier: many emerging contaminants, particularly those prevalent in low- 

and middle-income regions, lack sufficient toxicological records to train reliable models22.This creates 

blind spots in predictions, especially for underrepresented chemical classes such as nanomaterials and 

novel agrochemicals23. Another concern lies in algorithmic bias, where models trained on unbalanced 

datasets may overrepresent well-studied industrial compounds while neglecting region-specific 

pollutants such as pharmaceuticals and pesticides in African water systems24.   

5. CONCLUSION  

AI can transform environmental chemistry by enabling predictive and sustainable approaches 

to toxicity assessment. While challenges such as data quality, interpretability, and regulatory acceptance 

remain, continued development of transparent models, data harmonization, and supportive policies will 

allow AI-driven approaches to become central in safeguarding both human health and ecosystems.  

6. FUTURE PROSPECTS AND RECOMMENDATIONS  

The future of AI in environmental toxicology relies on developing explainable AI to improve 

transparency and regulatory trust, supported by international collaboration to build harmonized, 

openaccess datasets. Robust validation frameworks are needed to ensure models perform reliably in 

realworld contexts. Capacity building through interdisciplinary training and stronger partnerships among 

academia. industry, and regulators will be vital to translate its advances into practical tools for 

safeguarding human health and the environment.  
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