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ABSTRACT

Many diseases, such as glaucoma, epilepsy, and cancer, are associated with carbonic anhydrase Il. This makes it
an important therapeutic target for these diseases. A stacked ensemble machine learning model was built to predict
the binding affinity of ligands with CA Il. The dataset used consists of 6,530 compounds with experimental Ki values
from ChEMBL. Each molecule was represented by a set of 1,420 molecular descriptors, including Morgan
fingerprints, MACCS keys, and RDKit 2D descriptors, which were refined to 1,320 features through different feature
selection procedures. A stacked ensemble model which makes use of LightGBM, ExtraTrees, and a Multi-Layer
Perceptron (MLP) was developed, with ridge regression as the meta-learner. The model achieved a satisfactory
performance on the test set, with a root mean square error (RMSE) of 0.68 pKi units and a coefficient of
determination (R?) of 0.76. SHAP (SHapley Additive exPlanations) analysis of the best-performing model provided
important interpretability. The method identified some specific molecular substructures (e.g., Morgan_833), key
pharmacophoric elements (MACCS_84, MACCS_33), and functional groups (e.g., primary amines) as the most
impactful drivers of binding affinity. The outcome of the study aligns with established structure-activity relationships
for CA Il inhibitors; this validates the model's decision-making process. This work provides more than a tool for
virtual screening but also offers interpretable insights to guide the rational design of novel CA Il inhibitors.
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1. INTRODUCTION

Human Carbonic Anhydrase Il (hCA Il) is a zinc-dependent metalloenzyme essential for physiological
pH regulation and a well-established therapeutic target for conditions such as glaucoma and epilepsy,
which drives the development of inhibitors like sulfonamides.’23 While experimental binding affinity
measurements are resource-intensive,% conventional computational methods like molecular docking
and dynamics are constrained by force-field approximations and high computational cost.26.7.2 Machine
learning (ML) offers a powerful alternative by learning structure-activity relationships directly from data,
often surpassing the performance of classical scoring functions.2

Machine learning has been increasingly applied in carbonic anhydrase research, primarily focusing on
classification tasks such as predicting inhibitor activity (active/inactive)i? and identifying multi-target
inhibitors.”* Some studies have addressed the critical challenge of isoform selectivity, developing
models to distinguish inhibitors of off-target isoforms like hCA Il from therapeutic targets such as hCA
IX,12 with recent work incorporating explainable Al to elucidate the structural basis of these predictions.13
Although these classification approaches are valuable tools for virtual screening, they offer limited utility
for lead optimization, which requires quantitative potency measurements. Predicting continuous binding
affinity (pKi) values represents a complex but practically important task which enables the precise
ranking of compounds and also provides the avenue for quantitative structureactivity relationship
analysis. To address this need, the present study developed a stacked ensemble model to improve
predictive accuracy and generalization for binding affinity prediction. This approach provides both high-
accuracy pKi values and interpretable insights into the molecular features governing binding affinity.

2. METHODOLOGY

2.1. Data Curation and Preprocessing

An initial dataset of 10,294 potential human Carbonic Anhydrase Il (CA Il) inhibitors was sourced from
the ChEMBL database.’* This raw data was rigorously curated to ensure data quality, retaining only
entries with precisely defined equilibrium dissociation constant (Kj) values reported

in nanomolar (nM) units. Compounds annotated with inequality modifiers (e.g., '>', '<') were excluded.
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This filtration process resulted in a refined, high-confidence dataset of 6,539 compounds, each with a
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defined ChEMBL identifier, SMILES string, and exact K| value. For each unique canonical SMILES, only
the entry with the lowest reported Ki value (indicating the highest potency) was retained to represent
that compound, ensuring no data leakage between training and test sets. This process yielded a final
curated dataset of 6,530 compounds. The Ki (nM) values were converted to pKi, the negative logarithm
of the Ki in molar units, to create a more normally distributed target variable suitable for regression
modeling, using the standard transformation:

pKi =9 — log,(Ki_nM)

2.2. Molecular Feature Engineering and Selection

Molecular descriptors and fingerprints were computed for each compound using the RDK:it library to
numerically encode their structural and physicochemical properties. This included: (i) Morgan
Fingerprints (ECFP4-like), configured with a radius of 2 and a fixed length of 1024 bits to capture atomic
environments and molecular substructures; (i) 167-bit MACCS keys, which are binary fingerprints
which shows the presence of specific predefined structural fragments; and (iii) 208 RDKit 2D descriptors
capturing key properties. The combination of these features resulted in an

initial high-dimensional feature matrix comprising 1,413 dimensions for each molecule and whereby
after feature selection we have 1320 features for model development and evaluation.

2.3. Model Development and Evaluation

The curated dataset was partitioned using stratified random split into training set (60%), validation
(20%), and test sets (20%). A stacked ensemble architecture was implemented, using three base
learners (LightGBM, ExtraTrees, and MLP Regressor). Hyperparameter optimization was conducted
through randomized search with 3-fold cross-validation over 25 iterations. Model performance was
measured using root mean square error (RMSE), mean absolute error (MAE), and coefficient of
determination (R?) metrics. To enable interpretation of the model, SHapley Additive exPlanations
(SHAP) analysis was applied to elucidate feature contributions to model predictions.1®

3. RESULTS AND DISCUSSION
3.1. Results
3.1.1 Model Performance Evaluation

The performance of all models on both validation and test sets is summarized in Table 1. The Stacked
Ensemble achieved the best performance as shown in Figure 1

Table 1. Performance metrics of models on validation and test sets

Model Validation Set Test Set
RMSE MAE Rz RMSE MAE R?
Extra Trees 0.7084 0.5006 0.7436 0.6895 0.4919 0.7571
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LightGBM 0.7188 05257 07418  0.7052 05317  0.7459
MLP Neural 0.8144 06167 06610  0.7781 0.5910  0.6906
Network

Stacked Ensemble 0.6920 05063 07553  0.6815 0.5033  0.7627

On the validation set, the stacked ensemble achieved the lowest RMSE (0.6920) and highest R?
(0.7553), outperforming all individual models. Extra Trees was the strongest base learner (RMSE =
0.7084, R? = 0.7436), followed closely by LightGBM (RMSE = 0.7188, R? = 0.7418). This performance
hierarchy was maintained on the independent test set as shown in Figure 1, where the stacked
ensemble further improved to RMSE = 0.6815 and R? = 0.7627, confirming robust generalization and
the advantage of the ensemble approach.

RMEE Comparizon Across Models R? Comparizon Across Madels

1 o4 o8 an a7 na ' ni ‘2 ! n4 L " ol [

Figure 1: Comparative performance of individual models and stacked ensemble on the test set.
3.1.2 Model Interpretation via SHAP Analysis

SHAP analysis of the three individual models provided insights into binding affinity determinants.12
The key molecular features driving predictions were identified through the SHAP analysis as shown in
table 2.

Table 2. Top 5 Features by Model from SHAP Analysis

Rank ExtraTrees LightGBM MLP Neural Network

1 Morgan_833 (0.3366) SMR_VSA4 (0.4195) fr_NH2 (0.1297)

2 MACCS_84 (0.3175) Morgan_833 (0.1916) SMR_VSA4 (0.0679)

3 MACCS_33 (0.0864) MACCS_84 (0.1122) fr_sulfonamd (0.0489)

4 fr_NH2 (0.0772) MolLogP (0.0606) NHOHCount (0.0258)

5 Morgan_583 (0.0501) SPS (0.0453) FpDensityMorgan3 (0.0227)

3.2. Discussion

This study reports the design and evaluation of a reliable predictive stacked ensemble model for
predicting binding affinity (pKi) of ligands to human Carbonic Anhydrase Il (CA Il). The stacked
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ensemble model demonstrated strong predictive performance on the test set (RMSE = 0.68, R*= 0.76),
confirming the efficacy of this approach for QSAR modeling. Consistent with our findings, previous
QSAR studies have demonstrated that stacked ensemble approaches often outperform individual
models in terms of predictive accuracy.1817.18 The stacked ensemble approach in this study leveraged
the distinct strengths of its individual models: the gradient-boosting power of LightGBM,12 the random
feature selection and the use of random thresholds to split nodes in the decision trees in ExtraTrees,20:21
and the ability of MLPs to capture complex non-linearities and complex feature interactions22 that may
be missed by tree-based methods. The meta-learner (Ridge regression) weighted these predictions,
assigning the highest weights to the tree-based models, which individually performed best.

The curation process of the molecular data was a critical factor in the model's success. The steps taken
including SMILES standardization, removal of inorganic compounds, deduplication, and feature
selections which are considered best practices in computational chemistry to ensure data quality and
model reliability.22 The removal of highly correlated features is crucial, as it reduces redundancy and
multicollinearity, which can inflate variance and destabilize model coefficients. The model's performance
on the test set (R? = 0.76, RMSE = 0.68) is consistent with the high standards seen in modern QSAR
benchmarks. An RMSE of 0.68 log units, which corresponds to a less than 5-fold error in Ki value
prediction on average, is considered highly accurate for practical applications in drug discovery, such
as virtual screening and lead optimization prioritization.2

The SHAP analysis provided an important, experimentally actionable interpretation of the model
predictions, this reveals the key structural drivers. A strong consensus across models on specific
molecular features, particularly the Morgan_833 fingerprint and MACCS_84 key, suggests the
identification of important substructures that are strong determinants of binding affinity. The outcome is
consistent with the known structure-activity relationships of CA Il inhibitors, which often rely on a
zincbinding group and specific aromatic moieties that fit into the hydrophobic pocket of the enzyme. 25
26 Hydrogen-bonding features like the primary amine count (fr_NH2) and the primary sulfonamide group
(fr_sulfonamd) serves as a strong validation of the model's ability to recapitulate known medicinal
chemistry, as these groups are known to coordinate the active site zinc ion. Also, the impact of
properties like MolLogP and SMR_VSA4 shows the model's recognition that overall physicochemical
properties are vital for optimizing ligand efficiency and bioavailability.2” These interpretability results
significantly enhance the use of the model, as they provide medicinal chemists with specific guidance
on which functional groups and properties to modify in order to optimize compound affinity.

4. CONCLUSION

This study presents a stacked ensemble model and interpretation of the three individual models used
as the base learners. The SHAP analysis of the three individual models shows some important features
which are critical for the prediction and also provide insight for the rational design of novel CAlI
inhibitors.

Code and dataset are available at https://github.com/miraculinp/CAll
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